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I - INTRODUCTION 2

In the paper "Counting Large Numbers of Events in Small registers", Morris

[Mo 1978] proposed a probabilistic algorithm for keeping track of a large number
n

of events M with an n bit binary counter where typically M >> 2 -1 - largest

integer that can be represented by the counter. This method of counting has been

dubbed "Approximate counting" by Flajolet [Fl 1985] who reformulated the problem

in terms of a discrete time Markov chain b(t) with state space

+

1 [{0, 1, 2, ..

and transition function given by

SP(b(t+l) = i1 I b(t) - i) = 2 i, i >  0

1 -i
P(b(t 1) - i I  b(t) - i) = 1-2

The process b(t) arises naturally when one "counts" an event with
--h(t) - b(t)

probability 2 and does not record it with pr'obability 1-2 -  
, where

b(t) = currert. count. in the register. How well does b(t) track t ?

Morris [Mo 1978] has noted that e

(1)i, sarch supportoed by AFOSR Grant 082-0167
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a) E(2b(t)) = t+2

(1.2)

b) 0'(2b(t)) t(t+1)/2

and Flajolet [Fl 1985] has given a proof of (1.2).

Thus 2 b(t)-2 is an unbiased estimator of t. In addition Flajolet has shown,

Theorem 1 of [Fl 1985], that

(1.3) a,(t) < E(b(t)) - log2 t < a,(t)

where a.(t) are small and bounded as t -.
1

The proof of (1.3) given in [Fl 1985] is not simple since it uses Mellin

transforms and other refined techniques from the theory of functions of a complex
variable. It is the purpose of this paper to derive (1.2) and (1.3) by means of a

more elementary method, at least more elementary to probabilists !, using only

the simplest ideas of the theory of martingales. See chapter VI of [Ka-Ta 1975]

for a more comprehensive account. More precisely, we shall prove that (1.3) holds

with

-1
a,(t) = log2 (2t + log2)

and
-1

a,(t) = log2  (1 + 2t ).

In addition we derive a new recursive formula for E(2 t), 9 1.

Interesting/P1 enough the same process b(t), but with b(1) = 0, occurs in a

recent paper by [GGMM 1985] where b(t) represents the back off counter occuring

in the exponential back off protocol (EBO) when the channel is always jammed ; in

fact, this is what first stimulated my interest in this problem - see [Ro 1984].

The problem here i to show thait

-b(t) <n sup t E(P < . Availability Codes

tD4 i-t p -

In fact the following r;sult was prov-d in [GGMM 198']

= . . * - a *=~. % . '. . . *~ . . . .
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(1.4) 1/8 t E(2 -b (t ) 9, for all t Z 1.

By a simple martingale argument we are able to obtain the sharper lower

bound

(1.5) 1 t E(2
- b(t))

and with a little more effort we are able to show

-b( t)(1.6) t E(2 - t  )  4.1, t >  1.

In addition [GGMM 1985] conjectured that

-b(t) -1
(1.7) E(2 ) c t where c - I/log2.

In fact Flajolet has shown [Fl 1986] that (1.7) must be modified tb take

into account bounded fluctuations w(t) of small amplitude i.e. he shows that

-b(t) -1
, (1.8) E(2 ) - c t + W(t).

The proof of (1.8) is, as is to be expected, quite delicate. Using only

very simple tools we are able to prove the following weak form of conjecture

(1.7)

-b(s)
a) liM sup E E(2 )/log t . c

t 4 . 3=1

(1.9)
t -1b 

s
b) lim inf E E(2 )/log t > 1.

t 4 W s=1

These results are obtained in part 3.

Acknowledgments : I wish to thank my colleagues F. Baccelli, G. Fayolle, P.

Flajolet and P. Robert here at INRIA for sevral hel;pful discussions. In

particular the proof of the lower bound (2.9) i3 due to P. Robert.
-.-J 4 ' L;
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II - A METHOD FOR CONSTRUCTING MARTINGALES ASSOCIATED WITH A MARKOV CHAIN

* The following discussion assumes the reader is familiar with chapter VI of

Karlin-Taylor. Let y~t) be a Markov chain with countable state space

1 (0, 1, 2, ... ) and transition matrix P - (Pi,j)). Let W(Ot - ((()

0 u t) denote the smallest a-field generated by the random variables y(u),

* 0 u t. Intuitively (t)is the past up until time t. We recall the

Definition :we say that x(t) is a martingale with respect to (t)

if (1) X(t) is g?(t) measurable

(21)(ii) E(I x(t)I) < - and

In order to construct martingales associated with the Markov chain y(t) we

make use of the operators P and A acting on the function space

D - (f I C I + R, E P(i,j) I f(i)I < -1

Definition : Let f 6D

40

(i) Pf(i) A E P(lj) f(j)
J =0

*(2.2) (ii) Af(i) A Pf(i) - f(i)

(iii) PI fj (i) A E P(i,j) Ifi (i).
J -0

Note that Elf (y(t+1) f(y(t))I ('37t)) = Elf y~t+l) f f(y(t))I y(t)l Af (y(t))

* and using this fact it is easy to establish the following

Lemma: Suppose Pj fjCi) < and set

t- 1
(2.3) x(t) = fy~t)) - Af(s()), t 1 and x(0) =f(y(0)).

.9=0

Then (x~t), )9(t)) is a martingale.

4%
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For future reference we note the following special case. Suppose Af(i) ; c
all i Z 0. Then f(y(t)) - ct is a martingale.

Lemma (2.3) yields a novel and computationally simple proof of FlaJolet's

proposition 0 as well as a recursive formula for the higher moments of 2

Proposition :
(2.4) Let b(O) = 1. Then E(2 b(t)) - t 2 and a( 2b(t)) = t(t+I)/2.

Proof. We begin by noting that

(2.5) Af(j) = 2- j [f(J+1) - f(j)].

Let f (J) = 2 j where £ - 0, 1, 2, .... An easy calculation shows that

(2.6) Af (J) - (2t-1) f E1(J).

In particular Af,(j) 1 1 and therefore, by lemma (2.3), we have

f,(b(t)) - - 2 b(t)- t

s-O

is a martingale. Consequently

E(f,(b(t)) - t) - f,(b(O)) - f,(I) - 2 i.e.

(2.7) E(f,(b(t)) = E(2 b (t ) - t2.

Lemma (2.3) and formula (2.6) can now be used to derive a recursive formula

for the moments E(2tb(t) ), t Z 2. To illustrate these ideas consider the case

t = 2. Since Af,(j) = 3f1 (J) lemma (2.3) and (2.7) yield

t+1
E(f,(b(t)) - E 3f,(b(s)) = f2(b(O)) = 4

5=0

*V C'
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t-1 t-1
E(2

2b(t)) - E(f2 (b(t)) -4 + 3 E E(f,(b(s)) - 4 + 3 E (S+2) =

s-0 s-0

4 + 3 • (t-I)t + 6.t - t(t+3) + 4.
2- 2

Now

02(2 b (t ) = E(2 2b(t)) - E(2 b(t))2 - t(t+3) + 4 - (t22) 2 - t(t+1)

2 2+)+ - t2
Using (2.3) we can give a recurrence formula for the higther moments of

2b~t )" "More precisely let M (t) - E(2 b(t)), t - 0, 1 ..... Then lemma (2.3) and

(2.6) yield

t-1

(2.8) M (t) - 2 + (2 -1) E M (s).s=0

Note. We believe formula (2.8) to be new.

The formula E(2 b ( t )) - t+2 together with Jensen's inequality applied to the

concave function 4(t) = log 2t yield

E(b(t)) log2(t+2) - log2 t + log(1+2t ).

We now proceed to derive a lower bound for E(2 b (t ) using an argument

suggested to the author by P. Robert (INRIA).

An easy calcuulation shows that

E(b(t+1) - b(t)) = E(2 - b ( t ) ) 2 -E (b (t ))

and therefore

2E (b (t ) )  E(b(t+1) - b(t)) Z 1.

Thus

21 E(b(s))

2 E(b(s+1) b(s)) Z t.

3............. ..... ............................................."--.......-'...-..-..... ,-..-....-.0.-
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Set 0(s) = E(b(s)) ; so 0(0) - 1. The preceeding expression can be rewritten as

t-1 0s
1E 2 (O(s+l) - 0(s)) a t.

s-O

On the other hand

t-1 )(t) 2ds e(lOg2)(t) 10ie

t S E 2 (  (s)] f 2 = e el 2 )/log2 i.e.
s-0 1

20(t ) Z 2 + (log2).t

and this implies

E(b(t)) = 0(t) a log2 (t[log2 + 2t-I) = logzt + log, [log2 + 2t 1.

Summing up then we're shown that

2.9 log~t + log 2 (2t
-  + log2) S E(b(t)) S log~t + log,(1 + 2t- ).

E(b(t))

Clearly this implies im logt 1 and also that
t-*gw

(2.10) log 2 (log2) i E(b(t)) - log2t 1 I/t.

-b(t)
III AN IMPROVED ESTIMATE FOR E(2 

)

in this part of the paper we assume b(1) = 0 and repeating the same

argument of proposition (2.4) we see that

t-1

f,(b(t)) - E Af , (b(s))
s-1

is a martingale with

t-1
E(f1 (b(t)) - E Afl(b(s)) = f1 (b(l)) = 1.

3-1

CsuetyE2b(t) -1
Consequently E(2 t ) - t. We now apply Jensen's inequality with (x) = x to

deduce the much sharper lower bound

* * * .- ~~* ~ ... .2S*
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(3.1) E(2
-b(t)) a 1/t.

To obtain the upper bound

(3.2) E(2- b (t ) )  S 4.1/t.

We derive an exponential bound on the first passage time

- = inf{t : b(t) Zy]. This leads to a sharper estimate than the one obtained byy

[GGMM 1985] who used Chebychev's inequality ; otherwise the twc proofs are the

same.

Lemma For any X A(y) - - log(1 - 2- y- I)

(3.3) y-1
p(T Z t) S exp(-At+X) H (1 - (1 - exp(-x))2 )

y

Proof. Let y. be the random variable with geometric distribution given by

- i1 -J1

P(y,=J) = 2 (1-2-i)i- , J Z 1. Thus its moment generating function

E(e ) = ( 0 (1 - exp(-A))2 )

Clearly T, = 1 and for y > 1 we have

y- 1

1+ E Y
Y 1i=I

Since the y., 1 i S y-1, are mutually independant we see at once that
1

y-1

M (X) = E(exp(x Ty)) exp(X) ii E(exp(X y1))
y y =

y-1
= exp(A) ii ( (1 (1 exp(-X))2

i=1

By Chebychev's inequality exp(At) P(i y t) M (A) which i:; preciselyY y

lemma (3.3). Note that a sufficient condition for

M (A) < is sup 2 i (I exp(-A)) < 1.
.Y l~iWy-1
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In particular if we set X = X(y) where

(3.4) A(y) - - log(1 - 2
-Y)

then M (X) < - for A S A(y) and
y

(3.5) log(1 - (1 - exp(-A))2 i ) a - (log2)(1 - exp(-A))2 i ,

where we' ve used the inequality

log(1-x) a -(log2)x on 0 x S Y.

Our next step is to set A = A(y) in lemma (3.3) and then take the log of

both sides which leads to

y-1

log P(T Z t) S -A(y)(t-1) + (log2) Z

y i=1

S -A(y)t + (log2)(1 - y) + A(y).

Consequently

p(T >- t) c(y) exp(-X(y)t)

y

where

c(y) = exp{A(y) + (log2)(1 - 2 2 , y > .

We have thus derived the exponential bound

(3.6) P(j > t) S 23/2 exp(-A(y)t).Y

* -b(t)
We now proceed to estimate E(2 ). Set m - [log~t] so

(log~t)-1 < m <log~t, consequently

-' -b(t)
."E(2 - t) ; b(t) . m) < 2/t.

Here E(f ; A) means integrating f over th,_! sibsot A. So the problem Pow is

to show that
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E(2
-b ( t) ; b(t) M-i) < a/t

and to estimate the constant a. Now

(3.7) E(2 -b t ) ; b(t) S m-1) E1 2- J P(b(t) j).
j=0

But

and P(b(t) S J) = P( > t) 23/2 exp(-X(J)t)

* and

X(j) + log(I - 2 - ) -2

together imply

3/2 --j
P(b(t) j) 2/. exp(- 2 t)

23/2 exp(- 2m-J)

The right hand side of (3.7) is bounded by the sum

m-i M-j

S, E 2 - exp(- 2 - ).
j=0

Since - 2m
-j < 

- (m-j)2 it follows that

S 23/2 m -j" 3/2 M lexp(2) }S 2 E 2 [exp(-2)] m j :2 exp(-2m) z 2 -

j =0 j =0

(23/2/ [C(e/2)-1]) 2 m C c/t

where
5/2

a= 2 / [(e /2)-1] = 2.0993859.

Finally, putting these estimates together we obtain

-b(t)
(3.8) E(2 ) 4 4.0993859 / t.

• ..... . . . ....,S~ - 5. .



We conclude this part of the paper by establishing a weak form of the

conjecture (1.7). More precisely se ~)-E(2-bt ) and apply lemma (2.3) to

the function f(j) j. Since Af(j) - we see at once that

t1 -b(s)
E(b(t) - E 2 )=0

.1 s=1

and therefore

t1 -b(s)
(3.9) E E(2 )=E(b(t)) log,(t+2) =log(t+2) /log?.

s=1

On the other hand as we've already seen E(2- b ) 1 /t which implies

t- b(s) t1-1 ds
(3.10) E E(2 ) z 1/s a 1 + f - - 1 +log(t-l).

s=1 s=1 1

Combining (3.9) and (3.10) yields

t1 -b(s)
E E(2 )

3=1______

(a) lim sup lo t I/log?
t -

(3.11) t=1 -b(s)
E E(2 )

3=1
(b) lim inf ogt1

-b(-,t1 b3Note that if in f-ict E(2 ') c/s then E E(2 c log t. This; isi
8=1

* why we call (3.11) the weak form of conjecture (1.7).

IV -AN ESTIMATE FOR THE TAIL OF THE DISTRIBUTION

?b(t) 1
tUfi ng the resutlt that F(2 )= + (3/2) t(t+3) arid k2hoby,-Iiv' s

ine qu~iity it is i-miy to see that

*(!I J 1)PC b( t) 2 log2 + 6 0(2-26 t -2) 6 0.



In fact

P(b(t) Z 2 log, t 6) -. P(22b(t) Z 22 6 t4) 
S 4 + (3/2)t(t*3) S c, 2-26 t-2

226 . t4

where c, is independent of 6 and t. This is in fact a considerable strengthening

of Flajolet's proposition 4 wherein he shows that

P(b(t) = 21og 2 t + 6) = 0(2-6 t-99,

uniformly in t and 6 Z 0.

'p

'S"
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